skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Karstens, Jens"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Despite their global societal importance, the volumes of large-scale volcanic eruptions remain poorly constrained. Here, we integrate seismic reflection and P-wave tomography datasets with computed tomography-derived sedimentological analyses to estimate the volume of the iconic Minoan eruption. Our results reveal a total dense-rock equivalent eruption volume of 34.5 ± 6.8 km³, which encompasses 21.4 ± 3.6 km³ of tephra fall deposits, 6.9 ± 2 km³ of ignimbrites, and 6.1 ± 1.2 km³ of intra-caldera deposits. 2.8 ± 1.5 km³ of the total material consists of lithics. These volume estimates are in agreement with an independent caldera collapse reconstruction (33.1 ± 1.2 km³). Our results show that the Plinian phase contributed most to the distal tephra fall, and that the pyroclastic flow volume is significantly smaller than previously assumed. This benchmark reconstruction demonstrates that complementary geophysical and sedimentological datasets are required for reliable eruption volume estimates, which are necessary for regional and global volcanic hazard assessments. 
    more » « less
  2. Abstract Magma emplacement in the top unconsolidated sediments of rift basins is poorly understood. We compare two shallow sills from the Guaymas Basin (Gulf of California) using core data and analyses from IODP Expedition 385, and high‐resolution 2D seismic data. We show that magma stalling in the top uncemented sediment layer is controlled by the transition from siliceous claystone to uncemented silica‐rich sediment, favoring flat sill formation. Space is created through a combination of viscous indentation, magma‐sediment mingling and fluidization processes. We show that sills emplace above the opal‐A/CT diagenetic barrier. Our model suggests that in low magma input regions sills emplace at constant depth from the seafloor, while high magma input leads to upward stacking of sills, culminating in a funnel‐shaped intrusions. Our petrophysical, petrographic, and textural analyses show that magma‐sediment mingling creates significant porosity (up to 20%) through thermal cracking of the assimilated sediment. Stable isotope data suggest carbonate formation at 70–90°C, consistent with background geothermal gradient at 250–325 m depth. The unconsolidated, water‐rich host sediments produce little thermogenic gas through contact metamorphism, but deep diagenetically formed gas bypasses the low‐permeability top sediments via hydrothermal fluids flowing through the magma plumbing system. This hydrothermal system provides a steady supply of hydrocarbons at temperatures amendable for microbial life, serving as an incubator that may be abundant in magma‐rich young rift basins and play a key role in sustaining subseafloor ecosystems. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026